eyt
\V4

BUILDING MODERN
WEB APPS

WITH

Spring Boot & Vaadin

A practical introduction to web
application development using Java

vaadin }>

Table of Contents

Vaadin Flow Project Setup....... 2
Download Vaadin Application Starter 2
Import a Maven Project into IntelliJ 2
Run a Spring Boot Project in IntelliJ 5
Enable Auto Import in IntelliJ 6

Create a Vaadin Flow View withComponents.................. 8
Basic Elements 8
The Contact List View 1

Create a Form Component for EditingContacts .. 14
Components Using Composition 14
Form Component 15
Add Form to Main View 17

ConnectaViewtotheBackend 20
Introduction to Spring Boot 20
Backend Overview 20
Create a Service for Database Access 22
Implement Filtering in the Repository 23
Using Back-End Service 24

Vaadin Forms: Data Binding & Validation 27
Use Vaadin Binder to Create a Form & Validate Input 27
Create the Binder 27
Set the Contact 28
Set Up Component Events 28
Save, Delete, & Close the Form 30

Passing Data & Events among Vaadin Components............................oooooiii... 32
Show Selected Contact in Form 32
Form Events 35
Making the Layout Responsive 37

Navigatingamong ViewsinVaadin ... 39
View Routes 39
Parent Layout 40
Dashboard View 43
Dashboard View in Main Layout Sidebar 46

Add a Login Screento an Application...................... 48
Login View 48
Set Spring Security to Handle Logins 50
Add a Logout Button 54

Make a Vaadin Flow Application an Installable PWA ... 57
Understanding PWAs 57

PWA Resources 57

Customize Offline Page 58

Test Offline Page 60
Unit&Integration Tests 62
Unit Tests for Simple Ul Logic 62
Integration Tests for More Advanced Ul Logic 66
Test Vaadin Applications in Browser withEnd-To-End Tests 71
The Base Test Class 71
Test the Login View 73
Create a View Object 74
Deploy a Vaadin Flow Applicationon Azure i, 77
Prepare for Production 77
Deployment Using Azure Container Apps 77

Tutorial Conclusion & Next Steps 79

A practical guide to Spring Boot and Vaadin

Vaadin Flow Project Setup

This part of this tutorial covers downloading a Vaadin application starter, and importing a
Vaadin Maven project in IntelliJ. Plus, it explains how to configure IntelliJ for productive
development.

Download Vaadin Application Starter
This tutorial uses a pre-configured starter from Vaadin Start. The starter application includes a
few essential items:

* JPA data model consisting of Contact, Company, and Status JPA entities;

* Spring Data repositories for persisting and retrieving the entities from an embedded H2
database;

* data.sql file containing some test data;
* Single, empty view; and a

* Dockerfile.
To begin, download the starter application, which is a zip file. You can find it here:

https://start.vaadin.com/dI?preset=flow-crm-tutorial&preset=partial-prerelease

Import a Maven Project into IntelliJ

Having downloaded the zip archive file, you'll first have to unzip it somewhere. Any directory is
fine: just don’t unzip it to the download folder since you might unintentionally delete your
project later when clearing out old downloads.

In Intellid, select Open in the Welcome screen or File menu, as you can see in the screenshot
here:

https://start.vaadin.com/dl?preset=flow-crm-tutorial&preset=partial-prerelease

Welcome to IntelliJ IDEA

-

Intellid IDEA

=+ Create New Project

Import Project

¥ Get from Version Control

& Configure v GetHelp~

Next, from the directory tree that is displayed, find the folder re you extracted the files.
Select the pom. xm1 file and click the Open button.

Welcome to IntelliJ IDEA
[vaadin-crm Q

[Screen Shot...at 7.42.01 PM frontend

22 Dropbox B spring-boot-starter B LICENSE.md <?xm1_verﬁion="%.0" :
~ vaadin-crm package-lock.json e“%f’dlnﬁitUT;;B ?><project
. xmlns=" (H
E Desktop package.json maven.apache.org/POM/4.0.0"
d pom.xml xmlns:xsi="http://
| dev . README.md vfnm.w3.olrl‘g/2001/XMLSchema—
2 mhellber e :
Lal B src xsi:schemaLocation="http://
s e maven.apache.org/POM/4.0.0
':Z\V Applications http://maven.apache.org/
q xsd/maven—4.0.0.xsd">
B8 Vaadin <modelVersion>4.0.0</

modelVersion>
@ Downloads

Favorites

" Documents

iCloud pom.xml

& iCloud Drive

Information
Locations

Today, 7:42 PM
Tomorrow at 3:42 AM

1 marcus

Tane

New Folder Cancel Open

Select Open as Project from the dialog, as seen in the following screenshot:

Open Project

l IJ pom.xml is a project file.
— Would you like to open this project?

Open as File Cancel Open as Project

This imports the project based on the pom.xml file. IntelliJ then imports the project and
downloads all necessary dependencies. It can take several minutes, depending on the internet
connection speed.

When the import is complete, your project structure should look as seen in the screenshot here:

flow-crm-tutorial [flowecrmtutorial]

.mvn

frontend

src

main
IEVE
com
example
application

data
views

® Application

resources

Notice that the Java source files are in the src/main/java folder.

Run a Spring Boot Project in IntelliJ

Spring Boot makes it easier to run a Java web application because it handles starting and
configuring the server.

To run your application, run the Application class that contains the main() method that starts
Spring Boot. IntelliJ detects automatically that you have a class with a main() method and
displays it in the run configurations drop-down.

To start your application, open Application.java and click the play button next to the code
line containing the main() method.

After you've run the application once from the main () method, it will appear in the run
configurations drop-down in the main toolbar (see screenshot). On subsequent runs, you can
run the application from there.

LX) flow-crm-tutorial 3 - Application. java
flow-crm-tutorial 3) src) main example Application) &) main F Application + 4 G | Rebel v

pomxml (f

I Project

@SpringBootApplication
@Theme(value =)

@PWA(name = shortName = offlineResources
Application

@NpmPackage(value = version =)
Application AppShellConfigurator {

resourc

main(String[] args) {
SpringApplication.run(Application.

uild P Git

The first time you start a Vaadin application, it downloads front-end dependencies and builds a
JavaScript bundle. IntelliJ indexes all the added dependencies. It won't need to do that when
run subsequently.

You'll know that your application has started when you see output in the console similar to what
you see here:

Tomcat started on port(s): 8080 (http) with context path ''

The development mode in Vaadin also opens a browser window for you automatically. You'll
see a content placeholder and image similar to the screenshot here:

[= Jist X + ()
&« C ® localhost:8080 B & ¥ 9 :

This place intentionally left empty

It's a place where you can grow your own Ul &

Enable Auto Import in IntelliJ

You can configure IntelliJ to resolve imports automatically for Java classes. This makes it easier
to copy code from this tutorial into your IDE.

To enable auto import in IntelliJ, open the Preferences/Settings window and
navigate to Editor → General → Auto Import.

From there, you can enable the following two options: Add unambiguous imports on the fly;
and Optimize imports on the fly. You can see the checkboxes for these choices in the
screenshot here:

Preferences

Editor > General > Auto Import

» Appearance & Behavior XML

Keymap v| Show import popup
¥ Editor
Java
¥ General

Auto Import Insert imports on paste: | All

Appearance Show import popup for: V| classes v| static methods and fields
Breadcrumbs v| Add unambiguous imports on the fly
Code Completion V| Optimize imports on the fly (for current project)
Code Folding Exclude from import and completion:
Console Class/package/member qualified name mask
Editor Tabs com.sun
Gutter Icons java.awt
Postfix Completion javafx.scene
> Smart Keys javax.swing
Font s
Color Scheme
Code Style TypeScript / JavaScript

Inspections v| Add ES6 imports on code completion
Find more configuration options in
») v| Add TypeScript imports automatically
File Encodings Find more configuration options in

File and Code Templates

Live Templates v| On code completion
File Types v| With import popup

Copyright Unambiguous imports on the fly

Inlay Hints

Duplicates Add unambiguous imports on the fly

Emmat

Vaadin shares many class names (e.g., Button) with Swing, Java Abstract Window Toolkit
(AWT), and JavaFX.

If you don’t use Swing, AWT, or JavaFX in other projects, add the following packages to the
Exclude from import and completion list to help IntelliJ select the correct classes,
automatically:

¢ com.sun

* java.awt

* javafx.scene

* javax.swing

* jdk.internal

* sun.plugin

Now that you have a working development environment, you're ready to start building a web
application.

3C607714-1A52-49F0-9CB6-809F7A59F608

Create a Vaadin Flow View with Components

Vaadin is a Java framework for building web applications. It has a component-based
programming model that allows you to build user interfaces.

On this part, you'll learn core Vaadin concepts and scaffold the first view of the Custom
Relationship Management (CRM) application. It covers Vaadin component basics and
constructing a view with the Vaadin Flow Java API.

Basic Elements

Before getting into the details of creating a view, it's important to understand the basic
elements that you'll use.

Vaadin Ul Components

Vaadin includes over forty Ul components to help you build applications faster. By using ready-
made building blocks, you're able to focus primarily on building end-user functionality.

Vaadin components are custom HTML elements that are registered with the browser. They are
based on W3C web component standards. The components have light and dark themes that
can be customized with CSS variables to fit your brand.

{articles}/components.pdf

Checked

Unchecked

Checkbox

Checkbox is an input field representing a
binary choice. Checkbox Group is a group of
related binary choices. See Checkbox

Date

[choose a date

March 2018

1.2 3 4 5 6 7
8 9 10 M 12 13 1
5 16 17 18 19 20 21

222 23 24 25 26 27 28
29 30 31

Date Picker

The Date Picker provides a date selection
field with a scrollable month calendar. See

Combo box

List item| X v
v List item

List item

List item

List item

Combo Box

Combo Box is an input field that allows the
user to choose a value from a set of options
presented in a overlay list that can be
filtered by typing into the field. See Combo
Box

Email

team@vaadin.com‘ X

Email Field

The Email Field, an extension of Text Field,
only accepts email addresses as input. See

Price

234.95 EUR v

Datetime

Jan1st B 12:34 ©

Credit card number

Custom Field

With Custom Field you can wrap multiple
fields to a single field. It allows creating a
simple composite of multiple fields as a
single field in forms. See Custom Field

~ List item
List item
List item
List item

List item

List Box

List Box allows the user to select one or
more values from a scrollable list of items.

Date Picker Email Field See List Box

You can create a new component by initializing a Java object. For instance, to create a Button,
you would write something like this:

Creating a Button

Button button = new Button("I'm a Button");

Layouts

Layouts decide how components are positioned in the browser window. The most common
layout components are HorizontalLayout, VerticallLayout, and Div. The first two set the
content orientation as horizontal or vertical, whereas Div lets you control the positioning with
Css.

HorizontalLayout and VerticalLayout have methods to align items on both the primary
and the cross axis. For example, if you want all components, regardless of their height, to be
aligned with the bottom of a HorizontalLayout, you can set the default alignment to
Alignment.END.

Using this example, and the add () method to add components to layouts, you would do
something like this:

Setting layout alignment

Button button = new Button("I'm a Button");
HorizontalLayout layout = new HorizontalLayout(button, new DatePicker("Pick a Date"

));

layout.setDefaultVerticalComponentAlignment (Alignment.END);
add(layout);

The result of the above is what you see in the screenshot here:

Pick a date

I'm a button

Ul Events
You can add functionality to your application by listening to events. Events can include button
clicks and value changes from select components.

This example adds the text "Clicked!" to the layout when the button is clicked:

Listening to click events

button.addClickListener(clickEvent ->
add(new Text("Clicked!")));

HTML

One unique Vaadin Flow feature is that you can build web applications entirely in Java,
eliminating the need to write common HTML. This higher level of abstraction makes
development more productive and debugging easier.

Vaadin does support HTML templates and customizing the code that runs in the browser.
However, you don’t usually have to worry about this.

10

The Contact List View

The first view is the Contact list view. You can see how it looks in the screenshot here. It lists all
contacts. Users can search, add, edit, and delete contacts in this view.

You'll focus initially only on the list view. You'll add a layout containing the header and sidebar
later on the "Navigation & App Layout" part.

On this part and the next, you'll create the required layouts and components for the view. Then,
on the part that follows, you'll create a service class for accessing the backend and populating
the view with data.

Start by locating the ListView.java class under src/main/java. Then replace the contents
of the file with the following:

ListView.java

package com.example.application.views.list;

import com.example.application.data.entity.Contact;

import com.vaadin.flow.component.Component;

import com.vaadin.flow.component.button.Button;

import com.vaadin.flow.component.grid.Grid;

import com.vaadin.flow.component.orderedlayout.HorizontalLayout;
import com.vaadin.flow.component.orderedlayout.VerticallLayout;
import com.vaadin.flow.component.textfield.TextField;

import com.vaadin.flow.data.value.ValueChangeMode;

import com.vaadin.flow.router.PageTitle;

import com.vaadin.flow.router.Route;

(value = "")
("Contacts | Vaadin CRM")
public class ListView extends VerticallLayout { @
Grid<Contact> grid = new Grid<>(Contact.class); @
TextField filterText = new TextField();

public ListView() {
addClassName ("Llist-view");
setSizeFull();
configureGrid(); ®

add(getToolbar(), grid); @

private void configureGrid() {

grid.addClassNames ("contact-grid");

grid.setSizeFull();

grid.setColumns("firstName", "lastName", "email"); ®

grid.addColumn(contact -> contact.getStatus().getName()).setHeader ("Status"
); ®

grid.addColumn(contact -> contact.getCompany().getName()).setHeader ("
Company") ;

grid.getColumns().forEach(col -> col.setAutoWidth(true)); @

private HorizontalLayout getToolbar() {
filterText.setPlaceholder ("Filter by name...");
filterText.setClearButtonVisible(true);
filterText.setValueChangeMode (ValueChangeMode.LAZY) ;

Button addContactButton = new Button("Add contact");
var toolbar = new HorizontallLayout(filterText, addContactButton); ©

toolbar.addClassName ("toolbar");
return toolbar;

The following are comments about the code before. The numbers reference the circled
12

numbers at the end of various lines of code.

@ The view extends VerticalLayout, which places all child components vertically.
@ The Grid component is typed with Contact.

® The grid configuration is extracted to a separate method to keep the constructor easier to
read.

@ Add the toolbar and grid to the VerticalLayout.

® Define which properties of Contact the grid should show.

® Define custom columns for nested objects.

@ Configure the columns to adjust automatically their size to fit their content.

Configure the search field to fire value-change events only when the user stops typing. This
way you avoid unnecessary database calls, but the listener is still fired without the user
leaving the focus from the field.

© The toolbar uses a HorizontallLayout to place the TextField and Button next to each
other.

Adding some class names to components makes it easier to style the application later using
CSS.

If your application is still running from the previous step, you only need to perform a build,
either with the kbd:[Command+F9]/kbd:[Ctrl+F9] keyboard shortcut, or by pressing the
"hammer" icon in the toolbar (see cropped screenshot). Vaadin automatically reloads your
browser to display the changes.

Application

Build Project

Incidentally, you can keep the server running throughout this tutorial. You only need to restart
the server in a couple of instances. These are highlighted in the instructions.

You should now see the empty view structure in the browser window. On the next part, you'll
build a component for the form that’s used for editing contacts.

79C51513-862E-47EC-829D-9A149C0O6F7A0

13

Create a Form Component for Editing Contacts

The list view now has a grid to display Contact objects. To complete the view, you need to
create a form for editing contacts —like the one in the screenshot here:

= Vaadin CRM Log out
Contacts Filter by name Add Contact
Dashboard
Firstname Lastname Email Status Company First name
Alejandro
Eula Lane eulalane@jigrormoye Imported lead Laboratory Corporati
Barry Rodriqu.. barry.rodriquez@zu... Closed (lost) Avaya Inc. Last name
Eugenia Selvi eugenia.selvi@capf.. Contacted Phillips Van Heusen (| Miles
Alejandro Miles alejandro.miles@de... Contacted Linens 'n Things Inc. | .
Cora Tesi cora tesi@bivo,yt Customer Philips Van Heusen (| ajejandro.miles@dec.bn
Margue... Ishii marguerite.ishii@ju... Not contact.. Linens 'n Things Inc.
Status
Mildred Jacobs mildred jacobs@jor... Imported lead Laboratory Corporati
Contacted v
Gene Goodm... gene.goodman@ke... Closed (lost) Laboratory Corporati
Lettie Bennett lettie.bennett@odet... Imported lead Phillips Van Heusen (| Company
Mabel Leach mabel.leach@lisohu... Not contact.. Linens 'n Things Inc. | Linens 'n Things Inc. e
Jordan Miccinesi jordan.miccinesi@d.. Contacted Laboratory Corporati
Delete Cancel
Marie Parkes marie.parkes@nowu... Imported lead Avaya Inc.
Rose Gray rose.gray@kagu.hr Customer AutoZone, Inc.
Garrett Stokes garrett.stokes@fefbg Contacted AutoZone, Inc.
Barbara Matthieu barbara.matthieu@... Closed (lost) Avaya Inc.
Jean Rhodes jean.rhodes@wehov... Contacted Avaya Inc.
Jack Romoli jack.romoli@zamum... Customer Phillips Van Heusen (
Pearl Holden pearl.holden@dune... Imported lead Laboratory Corporati
Belle Montero belle. montero@repi... Closed (lost) AutoZone, Inc.
Olive Molina olive.molina@razup... Not contact... Phillips Van Heusen (
Minerva Todd minerva.todd@kulm... Contacted AutoZone. Inc.

This part covers creating a new component, as well as importing and using a custom
component.

Components Using Composition

Vaadin Flow is a component-based framework. In the previous parts here, you worked with
several components, like Grid, TextField, and VerticallLayout. However, the real power of
the component-based architecture is in the ability to create your own components.

Instead of building an entire view in a single class, your view can be composed of smaller
components that each handle different parts of the view. The advantage of this approach is
that individual components are easier to understand and test. The top-level view is used mainly
to orchestrate the components.

Form Component

The form component you'll create needs text fields for the first and last name, an email field,
and two select fields: one to select the company, and another to select the contact status.

Start by creating a new file, ContactForm.java, in the
com.example.application.views. list package. If you're using IntelliJ, copy the code
below and paste it into the views package. IntelliJ automatically creates the file.

src
IMET
IEVE]

com New

example
appli K Cut
d: '8 Copy

vi Copy Path...
O Paste

Find Usages
@Al Find in Files...

¥ MZresources Replace in Files...
N META-INF Ana|yze

ContactForm.java

package com.example.application.views.list;

import com.example.application.data.entity.Company;

import com.example.application.data.entity.Status;

import com.vaadin.flow.component.Key;

import com.vaadin.flow.component.button.Button;

import com.vaadin.flow.component.button.ButtonVariant;

import com.vaadin.flow.component.combobox.ComboBox;

import com.vaadin.flow.component.formlayout.FormLayout;

import com.vaadin.flow.component.orderedlayout.HorizontalLayout;
import com.vaadin.flow.component.textfield.EmailField;

import com.vaadin.flow.component.textfield.TextField;

import java.util.List;

public class ContactForm extends FormLayout { @

TextField firstName = new TextField("First name"); @
TextField lastName = new TextField("Last name");
EmailField email = new EmailField("Email");
ComboBox<Status> status = new ComboBox<>("Status");
ComboBox<Company> company = new ComboBox<>("Company");

Button save = new Button('"Save");
Button delete = new Button('"Delete");
Button close = new Button("Cancel");

public ContactForm(List<Company> companies, List<Status> statuses)
addClassName("contact-form"); ®

company.setItems(companies);
company.setItemLabelGenerator (Company::getName);
status.setItems(statuses);
status.setItemLabelGenerator (Status::getName);

add(firstName, @
lastName,
email,
company,
status,
createButtonsLayout());

private HorizontallLayout createButtonsLayout() {
save.addThemeVariants (ButtonVariant.LUMO_PRIMARY); ®
delete.addThemeVariants(ButtonVariant.LUMO_ERROR) ;
close.addThemeVariants(ButtonVariant.LUMO_TERTIARY);

save.addClickShortcut(Key.ENTER); ®
close.addClickShortcut(Key.ESCAPE);

return new HorizontallLayout(save, delete, close); @

® contactForm extends FormLayout: a responsive layout that shows form fields in one or
two columns, depending on the viewport width.

@ Creates all the Ul components as fields in the component.

® Gives the component a CSS class name, so you can style it later.

@ Adds all the Ul components to the layout. The buttons require a bit of extra configuration.

Create and call a new method, createButtonsLayout().
® Makes the buttons visually distinct from each other using built-in theme variants.
® Defines keyboard shortcuts: Enter to save and Escape to close the editor.

@ Returns a HorizontallLayout containing the buttons to place them next to each other.

Add Form to Main View

The next step is to add the form you created to the main view. To do this, change ListView as

follows:

{articles}/components/button/.pdf#styles

ListView.java

public class ListView extends VerticalLayout {
Grid<Contact> grid = new Grid<>(Contact.class);
TextField filterText = new TextField();
ContactForm form; @

public ListView() {
addClassName("list-view");
setSizeFull();
configureGrid();
configureForm(); @

add(getToolbar(), getContent()); ®

private Component getContent() {
HorizontalLayout content = new HorizontalLayout(grid, form);
content.setFlexGrow(2, grid); @
content.setFlexGrow(1l, form);
content.addClassNames("content");
content.setSizeFull();
return content;

private void configureForm() {
form = new ContactForm(Collections.emptylList(), Collections.emptylList()); ®

form.setWidth("25em");

// Remaining methods omitted

}
@ Creates a reference to the form so you have access to it from other methods.

@ create a method for initializing the form.

® Change the add () method to call getContent (). The method returns a
HorizontallLayout that wraps the form and the grid, showing them next to each other.

@ yse setFlexGrow() to specify that the Grid should have twice the space of the form.
® Initialize the form with empty company and status lists: you'll add these on the next part.

You can now build the project to reload the browser. You should see the form on the right side
of the grid.

® ©® @ contacts| Vaadin CRM x +

C © localhost:8080

Filter by name... Add contact
First Name Last Name Email Status Company First name
Last name
Email
Company
Status

Now that you have the view built, it's time to connect it to the backend.

2BOA44E7-14EA-4FF5-ACC0O-983F03C27AC4

Cancel

19

Connect a View to the Backend

On the previous part of this tutorial, you created a view using Vaadin components and layouts.
On this part, you'll connect the view to the backend to display and update data.

You can find the back-end code in the src/main/java directory.
This part of this tutorial covers three main aspects of this:

* Spring Boot introduction;
* Spring Service Interface to the backend; and

* Accessing a service from a view.

Introduction to Spring Boot

Vaadin uses Spring Boot on the server. Spring Boot is an opinionated, convention-over-
configuration approach to creating Spring applications. It automates much of the required
configuration and manages an embedded Tomcat server. So, you don't need to deploy the
application to a separate server.

This tutorial uses the following features that are configured by Spring Boot:

* Spring Data for accessing the database through JPA and Hibernate;

* An embedded H2 Database for development (easy to replace with e.g. PostgreSQL for
production);

* Spring Boot DevTools for automatic code reload;
* Embedded Tomcat server for deployment; and

* Spring Security for authenticating users.

Backend Overview

The starter you downloaded contains the entities and repositories you need. It also contains
sample data loaded using src/main/resources/data.sql file.

Domain Model: Entities

<!I-- vale Vaadin.Abbr = NO -->

20

https://spring.io/projects/spring-boot
https://spring.io/projects/spring-data
https://spring.io/projects/spring-data-jpa
https://www.h2database.com/html/main.html
https://spring.io/projects/spring-security

The Vaadin CRM application has three JPA entities that make up its domain model: Contact,
Company, and Status. A contact belongs to a company and has a status.

<!-- vale Vaadin.Abbr = YES -->

You can find the entities in the com.example.application.data.entity package.

@~ MappedSuperclass

o Entity AbstractEntity
pid Integer
_____ | :
<+~ Contact
-P company Company - Status ¢~ Company

-P lastName String

. . : :P name String
-P email String :P name String .
. . :P employees List<Contact>
.p firstName String

-P status Status

Database Access: Repositories

The application uses Spring Data JPA repositories for database access. Spring Data provides
implementations of basic create, read, update, and delete (i.e., CRUD) database operations
when you extend from the JpaRepository interface.

You can find the repositories in the com.example.application.data.repository package

Sample Data

The src/main/resources/data.sql file contains sample data that Spring Boot populates to
the database on startup.

21

Create a Service for Database Access

Instead of accessing the database directly from the view, you would create a Spring Service.
The service class handles the application’s business logic and, in larger applications, it often
transforms database entities into Data-Transfer Objects (DTO) for views. This tutorial shows
how to create a single service that provides all of the methods you need.

First, create a new class, CrmService.java, in the data.service package with the following
content:

CrmService.java

package com.example.application.data.service;

import com.example.application.data.entity.Company;

import com.example.application.data.entity.Contact;

import com.example.application.data.entity.Status;

import com.example.application.data.repository.CompanyRepository;
import com.example.application.data.repository.ContactRepository;
import com.example.application.data.repository.StatusRepository;
import org.springframework.stereotype.Service;

import java.util.List;

@

public class CrmService {

private final ContactRepository contactRepository;
private final CompanyRepository companyRepository;
private final StatusRepository statusRepository;

public CrmService(ContactRepository contactRepository,
CompanyRepository companyRepository,
StatusRepository statusRepository) { @
this.contactRepository = contactRepository;
this.companyRepository = companyRepository;
this.statusRepository = statusRepository;

public List<Contact> findAllContacts(String stringFilter) {
if (stringFilter == null || stringFilter.isEmpty()) { ®
return contactRepository.findAl1l();
} else {
return contactRepository.search(stringFilter);

public long countContacts() {
return contactRepository.count();

public void deleteContact(Contact contact) {

22

contactRepository.delete(contact);

public void saveContact(Contact contact) {

if (contact == null) { @
System.err.println("Contact is null. Are you sure you have connected

your form to the application?");
return;

}

contactRepository.save(contact);

public List<Company> findAllCompanies() {
return companyRepository.findAll();

public List<Status> findAllStatuses(){
return statusRepository.findAll();

}

@ The @Service annotation makes this a Spring-managed service that you can inject into your
view.

@ yse Spring constructor injection to autowire the database repositories.

® Check if there’s an active filter: return either all contacts, or use the repository to filter based
on the string.

@ service classes often include validation and other business rules before persisting data. You
check here that you aren't trying to save a null object.

Implement Filtering in the Repository

Add the search () method to the contacts repository so as to provide the service class with
the required method for filtering contacts.

ContactRepository.java

public interface ContactRepository extends JpaRepository<Contact, Long> {

@Query("select c from Contact c " +
"where lower (c.firstName) like lower (concat('%', :searchTerm, '%')) " +
"or lower(c.lastName) like lower(concat('%', :searchTerm, '%'))") @
List<Contact> search(@Param("searchTerm") String searchTerm); @

This example uses the @Query annotation to define a custom query (see annotation 1). In this

case, it checks if the string matches the first or the last name, and ignores the case. The query

uses Java Persistence Query Language (JPQL) which is an SQL-like language for querying JPA-
23

https://en.wikipedia.org/wiki/Java_Persistence_Query_Language

managed databases.

You don’t need to implement the method. Spring Data provides the implementation based on
the query.

Using Back-End Service

You can now inject the CrmService into the list view to access the backend.

ListView.java

package com.example.application.views.list;

import com.example.application.data.entity.Contact;

import com.example.application.data.service.CrmService;

import com.vaadin.flow.component.Component;

import com.vaadin.flow.component.button.Button;

import com.vaadin.flow.component.grid.Grid;

import com.vaadin.flow.component.orderedlayout.HorizontalLayout;
import com.vaadin.flow.component.orderedlayout.VerticalLayout;
import com.vaadin.flow.component.textfield.TextField;

import com.vaadin.flow.data.value.ValueChangeMode;

import com.vaadin.flow.router.PageTitle;

import com.vaadin.flow.router.Route;

(value = "")
("Contacts | Vaadin CRM")
public class ListView extends VerticalLayout {
Grid<Contact> grid = new Grid<>(Contact.class);
TextField filterText = new TextField();
ContactForm form;
CrmService service;

public ListView(CrmService service) { @
this.service = service;
addClassName("list-view");
setSizeFull();
configureGrid();
configureForm();

add(getToolbar (), getContent());
updateList(); @

private Component getContent() {
HorizontalLayout content = new HorizontalLayout(grid, form);
content.setFlexGrow(2, grid);
content.setFlexGrow(1, form);
content.addClassNames("content");
content.setSizeFull();
return content;

24

private void configureForm() {
form = new ContactForm(service.findAllCompanies(), service.findAllStatuses(

)); ®
form.setWidth("25em") ;

private void configureGrid() {
grid.addClassNames("contact-grid");
grid.setSizeFull();
grid.setColumns("firstName", "lastName", "email");
grid.addColumn(contact -> contact.getStatus().getName()).setHeader ("Status"

)3

grid.addColumn(contact -> contact.getCompany().getName()).setHeader ("
Company") ;

grid.getColumns().forEach(col -> col.setAutoWidth(true));

private HorizontalLayout getToolbar() {
filterText.setPlaceholder ("Filter by name...");
filterText.setClearButtonVisible(true);
filterText.setValueChangeMode (ValueChangeMode.LAZY);
filterText.addValueChangeListener(e -> updateList()); @

Button addContactButton = new Button("Add contact");

var toolbar = new HorizontalLayout(filterText, addContactButton);
toolbar.addClassName("toolbar");
return toolbar;

private void updatelList() { ®
grid.setItems(service.findAllContacts(filterText.getValue()));

3

@ Autowire CrmService through the constructor. Save it in a field, so you can access it from
other methods.

Q@ call updateList() once you have constructed the view.

® Use the service to fetch companies and statuses.

@ call updateList() any time the filter changes.

® updateList() sets the grid items by calling the service with the value from the filter text

field.

Now build the project, refresh the browser, and verify that you can now see contacts in the
grid. It should look like the screenshot here. Try filtering the contents by typing in the filter text
field.

25

[XON] @ Contacts | Vaadin CRM X +

C @ localhost:8080

jal X Add contact
First Name Last Name Email
Alejandro Miles alejandro.miles@dec.bn

Mildred Jacobs mildred.jacobs@joraf.wf
Jack Romoli jack.romoli@zamum.bw
Jay Blake jay.blake@ral.mk

1EA60808-40B7-4FOC-8B71-COCB905299D2

26

Status

Contacted
Imported lead
Customer

Customer

First name
Last name
Email

Company

Status

Save

Delete

Cancel

Vaadin Forms: Data Binding & Validation

On the Create a Component part of this tutorial, you created the input fields and buttons that
you need for editing contacts. On this part, you'll bind those inputs to a Contact object to
create a fully functional form with validation.

This part covers creating a Vaadin Binder, binding input fields, and field validation.

Use Vaadin Binder to Create a Form & Validate Input

A form is a collection of input fields that are connected to a data model, a Contact in this case.
Forms validate user input and make it easy to get an object filled with input values from the Ul.

Vaadin Binder binds Ul fields to data object fields by name. For instance, it takes a Ul field
named firstName and maps it to the firstName field of the data object, and the lastName
field to the lastName field, and so on. This is why the field names in Contact and
ContactForm are the same. Vaadin uses the Binder class to build forms.

Advanced Binder AP|

Binder also supports an advanced API where you can configure data conversions and additional

validation rules. For this application, though, the simple API is sufficient.
NOTE

Binder can use validation rules that are defined on the data object in the Ul. This means you can
run the same validations both in the browser and before saving to the database, without
duplicating code.

Bean Validation Rules in Java

You can define data validation rules as Java Bean Validation annotations on the Java class. You
can see all of the applied validation rules by inspecting Contact.java. The validations are
placed above the field declarations like this:

private String email = "";

Create the Binder

Instantiate a Binder and use it to bind the input fields like this:

27

./creating-a-component.pdf
{articles}/binding-data/components-binder.pdf
{articles}/binding-data/components-binder-validation.pdf

ContactForm.java

// Other fields omitted
Binder<Contact> binder = new BeanValidationBinder<>(Contact.class); @

public ContactForm(List<Company> companies, List<Status> statuses) {
addClassName("contact-form");
binder.bindInstanceFields(this); @
// Rest of constructor omitted

3

@ BeanvalidationBinder is a Binder that's aware of bean validation annotations. By
passing it in the Contact.class, you define the type of object to which you're binding.

@ b4 ndInstanceFields () matches fields in Contact and ContactForm based on their

names.

With these two lines of code, you've prepared the Ul fields to be connected to a contact, which
is the next step.

Set the Contact
You're ready now to create a setter for the contact. Unlike the companies and statuses, it can
change over time as a user browses through the contacts.

To do this, add the following method in the ContactForm class:

ContactForm.java

public class ContactForm extends FormLayout {

public void setContact(Contact contact) {
binder.setBean(contact); @
}
}

@ calls binder.setBean() to bind the values from the contact to the Ul fields. The method
also adds value change listeners to update changes in the Ul back to the domain object.

Set Up Component Events

Vaadin comes with an event-handling system for components. You've already used it to listen
to value-change events from the filter Text Field in the main view. The form component should
have a similar way of informing parent components of events.

A few events can be fired: SaveEvent; DeleteEvent; and CloseEvent. To define new events,

28

add the following code at the end of the ContactForm class:

ContactForm.java

// Events
public static abstract class ContactFormEvent extends ComponentEvent<ContactForm> {
private Contact contact;

protected ContactFormEvent(ContactForm source, Contact contact) { @
super (source, false);
this.contact = contact;

public Contact getContact() {
return contact;

public static class SaveEvent extends ContactFormEvent {
SaveEvent(ContactForm source, Contact contact) {
super (source, contact);

public static class DeleteEvent extends ContactFormEvent {
DeleteEvent(ContactForm source, Contact contact) {
super (source, contact);

public static class CloseEvent extends ContactFormEvent {
CloseEvent(ContactForm source) {
super (source, null);

public Registration addDeleteListener (ComponentEventListener<DeleteEvent> listener)

{®

return addListener(DeleteEvent.class, listener);

public Registration addSavelistener(ComponentEventListener<SaveEvent> listener) {
return addListener(SaveEvent.class, listener);

}
public Registration addCloseListener (ComponentEventListener<CloseEvent> listener) {
return addListener(CloseEvent.class, listener);

® contactFormEvent is a common superclass for all of the events. It contains the contact
that was edited or deleted.

@ The addxListener () methods that passes the well-typed event type to Vaadin's event bus
to register the custom event types. Select the com.vaadin import for Registration if
29

IntelliJ asks.

Save, Delete, & Close the Form

With the event types defined, you can now inform anyone using ContactForm of relevant
events. To add save, delete, and close event listeners, add the following to the
ContactForm class:

ContactForm.java

private Component createButtonsLayout() {
save.addThemeVariants(ButtonVariant.LUMO_PRIMARY) ;
delete.addThemeVariants(ButtonVariant.LUMO_ERROR) ;
close.addThemeVariants(ButtonVariant.LUMO_TERTIARY);

save.addClickShortcut(Key.ENTER);
close.addClickShortcut(Key.ESCAPE);

save.addClickListener (event -> validateAndSave()); @
delete.addClickListener (event -> fireEvent(new DeleteEvent(this, binder.getBean()

M) @

close.addClickListener(event -> fireEvent(new CloseEvent(this))); ®

binder.addStatusChangelListener(e -> save.setEnabled(binder.isValid())); @
return new HorizontalLayout(save, delete, close);

}
private void validateAndSave() {

if(binder.isvalid()) {
fireEvent(new SaveEvent(this, binder.getBean())); ®

}
}

® The save button calls the validateAndSave () method.
@ The delete button triggers a delete event and passes the active contact.
® The cancel button fires a close event.

@ validates the form every time it changes. If it's invalid, it disables the save button to avoid
invalid submissions.

® Fire a save event, so the parent component can handle the action.

<!I-- vale Vaadin.Therels = NO -->

Now, build the project and verify that it compiles. There won't be, though, any visible changes

yet.

On the next part of this tutorial, you'll connect the form to the list view to complete the first

30

view.

<l-- vale Vaadin.Therels = YES -->

D788B762-1531-4C0C-A207-BB01672A413F

31

Passing Data & Events among Vaadin
Components

On the previous part of this tutorial, you created a reusable form component to edit contacts.
Now you'll connect it to the rest of the view and manage the view state.

The form shows the selected contact in the grid. It's hidden when no contact is selected. It also
saves and deletes contacts in the database.

Show Selected Contact in Form

The first step is to show the selected grid row in the form. To do this, update ListView as
follows:

ListView.java

package com.example.application.views.list;

import com.example.application.data.entity.Contact;

import com.example.application.data.service.CrmService;

import com.vaadin.flow.component.Component;

import com.vaadin.flow.component.button.Button;

import com.vaadin.flow.component.grid.Grid;

import com.vaadin.flow.component.orderedlayout.HorizontalLayout;
import com.vaadin.flow.component.orderedlayout.VerticallLayout;
import com.vaadin.flow.component.textfield.TextField;

import com.vaadin.flow.data.value.ValueChangeMode;

import com.vaadin.flow.router.PageTitle;

import com.vaadin.flow.router.Route;

(value = "")
("Contacts | Vaadin CRM")
public class ListView extends VerticallLayout {
Grid<Contact> grid = new Grid<>(Contact.class);
TextField filterText = new TextField();
ContactForm form;
CrmService service;

public ListView(CrmService service) {
this.service = service;
addClassName("list-view");
setSizeFull();
configureGrid();
configureForm();

add(getToolbar (), getContent());
updateList();
closeEditor(); @

32

private HorizontalLayout getContent() {
HorizontalLayout content = new HorizontalLayout(grid, form);
content.setFlexGrow(2, grid);
content.setFlexGrow(1, form);
content.addClassNames("content");
content.setSizeFull();
return content;

private void configureForm() {
form = new ContactForm(service.findAllCompanies(), service.findAllStatuses(
))s
form.setWidth("25em");

private void configureGrid() {
grid.addClassNames("contact-grid");
grid.setSizeFull();
grid.setColumns("firstName", "lastName'", "email");
grid.addColumn(contact -> contact.getStatus().getName()).setHeader ("Status"

grid.addColumn(contact -> contact.getCompany().getName()).setHeader ("
Company") ;
grid.getColumns().forEach(col -> col.setAutoWidth(true));

grid.asSingleSelect().addValueChangeListener (event ->
editContact(event.getValue())); @

private Component getToolbar() {
filterText.setPlaceholder ("Filter by name...");
filterText.setClearButtonVisible(true);
filterText.setValueChangeMode (ValueChangeMode.LAZY);
filterText.addValueChangelListener(e -> updateList());

Button addContactButton = new Button("Add contact");
addContactButton.addClickListener(click -> addContact()); ®

var toolbar = new HorizontalLayout(filterText, addContactButton);
toolbar.addClassName("toolbar");
return toolbar;

public void editContact(Contact contact) { @
if (contact == null) {
closeEditor();
} else {
form.setContact(contact);
form.setVisible(true);
addClassName("editing");

private void closeEditor() {
form.setContact(null);
form.setVisible(false);
removeClassName ("editing");

3

private void addContact() { ®
grid.asSingleSelect().clear();
editContact(new Contact());

private void updateList() {
grid.setItems(service.findAllContacts(filterText.getValue()));

3
3

@ The closeEditor () call at the end of the constructor:
* sets the form contact to null, clearing out old values;
¢ hides the form;
* removes the "editing" CSS class from the view.
@ addValueChangelListener () adds a listener to the grid. The Grid component supports
multi- and single-selection modes. You only need to select a single Contact, so you can use

the asSingleSelect() method. The getValue () method returns the Contact in the
selected row, or null if there is no selection.

® call addContact () when the user clicks on the "Add contact" button.

@ editContact () sets the selected contact in the ContactForm and hides or shows the
form, depending on the selection. It also sets the "editing" CSS class name when editing.

® addContact() clears the grid selection and creates a new Contact.

Next, you'll build the application. You should be able to select contacts in the grid and see them
in the form. However, none of the buttons work yet.

34

C @ localhost:8080

Filter by name...

First Name

Eula
Barry
Eugenia
Alejandro
Cora
Marguerite
Mildred
Gene
Lettie
Mabel
Jordan
Marie
Rose
Garrett
Barbara

Jean

@ Contacts | Vaadin CRM

Last Name

Lane
Rodriquez
Selvi
Miles

Tesi

Ishii
Jacobs
Goodman
Bennett
Leach
Miccinesi
Parkes
Gray
Stokes
Matthieu

Rhodes

Form Events

Add contact

Email

eula.lane@jigrormo.ye
barry.rodriquez@zun.mm
eugenia.selvi@capfad.vn
alejandro.miles@dec.bn
cora.tesi@bivo.yt
marguerite.ishii@judbilo.gn
mildred.jacobs@joraf.wf
gene.goodman@kem.tl
lettie.bennett@odeter.bb
mabel.leach@lisohuje.vi
jordan.miccinesi@duod.gy
marie.parkes@nowufpus.ph
rose.gray@kagu.hr
garrett.stokes@fef.bg
barbara.matthieu@derwogi.jm

jean.rhodes@wehovuce.gu

<!I-- vale Vaadin.So = NO -->

The ContactForm APl is designed to be reusable; it's configurable through properties and it
fires the necessary events. So far, you've passed a list of companies, the status, and the

Status

Imported lead
Closed (lost)
Contacted
Contacted
Customer
Not contacted
Imported lead
Closed (lost)
Imported lead
Not contacted
Contacted
Imported lead
Customer
Contacted
Closed (lost)

Contacted

Company

Laboratory Corpora
Avaya Inc.

Phillips Van Heusen
Linens 'n Things Inc
Phillips Van Heusen
Linens 'n Things Inc
Laboratory Corpora
Laboratory Corpora
Phillips Van Heusen
Linens 'n Things Inc
Laboratory Corpora
Avaya Inc.
AutoZone, Inc.
AutoZone, Inc.
Avaya Inc.

Avaya Inc.

B2 rx @ :

First name

Mildred

Last name

Jacobs

Email

mildred.jacobs@joraf.wf

Company

Laboratory Corporation of Americ v

Status

Imported lead

contact to the form. However, you need the application to listen for the events to complete the

integration.

<!-- vale Vaadin.So = YES -->

To handle event listeners, update configureForm() and add saveContact() and
deleteContact () methods.

35

ListView.java

private void configureForm() {
form = new ContactForm(service.findAllCompanies(), service.findAllStatuses());
form.setWidth("25em") ;
form.addSavelListener(this::saveContact); @
form.addDeletelListener(this::deleteContact); @
form.addCloselListener (e -> closeEditor()); ®

private void saveContact(ContactForm.SaveEvent event) {
service.saveContact(event.getContact());
updateList();
closeEditor();

private void deleteContact(ContactForm.DeleteEvent event) {
service.deleteContact(event.getContact());
updateList();
closeEditor();

}

@ The save event listener calls saveContact(). It does a few things:
a. Uses contactService to save the contact in the event to the database;
b. Updates the list; and

c. Closes the editor.

@ The delete event listener calls deleteContact(). In the process, it also does a few things:
a. Uses contactService to delete the contact from the database;
b. Updates the list; and

c. Closes the editor.
® The close event listener closes the editor.

Build the application now and verify that you're able to select, add, update, and delete contacts.

36

® O ® @ contacts| Vaadin CRM x o+ (-]

C @ localhost:8080 B % @

Filter by name... Add contact

First Name Last Name Email Status Company First name

I'm
I'm Updated! eula.lane@jigrormo.ye Imported lead Laboratory Corpora
. . Last name
Barry Rodriquez barry.rodriqguez@zun.mm Closed (lost) Avaya Inc.
. . . . - Updated!

Eugenia Selvi eugenia.selvi@capfad.vn Contacted Phillips Van Heusen

Alejandro Miles alejandro.miles@dec.bn Contacted Linens 'n Things Inc Email

Cora Tesi cora.tesi@bivo.yt Customer Phillips Van Heusen Gl B ETEe

Marguerite Ishii marguerite.ishii@judbilo.gn Not contacted Linens 'n Things Inc Company

Mildred Jacobs mildred.jacobs@joraf.wf Imported lead Laboratory Corpora Laboratory Corporation of Americ v
Gene Goodman gene.goodman@kem.tl Closed (lost) Laboratory Corpora status

Lettie Bennett lettie.bennett@odeter.bb Imported lead Phillips Van Heusen Imported lead v
Mabel Leach mabel.leach@lisohuje.vi Not contacted Linens 'n Things Inc Delete Cancel
Jordan Miccinesi jordan.miccinesi@duod.gy Contacted Laboratory Corpora

Marie Parkes marie.parkes@nowufpus.ph Imported lead Avaya Inc.

Rose Gray rose.gray@kagu.hr Customer AutoZone, Inc.

Garrett Stokes garrett.stokes@fef.bg Contacted AutoZone, Inc.

Barbara Matthieu barbara.matthieu@derwogi.jm Closed (lost) Avaya Inc.

Jean Rhodes jean.rhodes@wehovuce.gu Contacted Avaya Inc. n

Making the Layout Responsive

Now if you try the Ul with a mobile device or make your desktop browser really narrow, you see
that the Ul is not currently well optimized for small screens. It usually makes sense to hide
certain Ul elements for smaller screens. You can accomplish this using Java code or with CSS
media queries.

This example uses CSS and utilize the class names previously assigned to the components. Add
the following CSS to frontend/themes/flowcrmtutorial/styles.css:

styles.css
@media all and (max-width: 1100px) {
.list-view.editing .toolbar,

.list-view.editing .contact-grid {
display: nonej;

The CSS media query hides the grid and the toolbar when you are editing contacts on a narrow
screen.

37

TADFAE2F-44BD-4EE2-A8E1-E8B49581856B

38

Navigating among Views in Vaadin

<!I-- vale Vaadin.So = NO -->

So far in this tutorial series, you've built a Customer Relationship Management (CRM)
application for listing and editing contacts. Now, you'll add a dashboard view to the application.
You'll also add a responsive application layout, with a header and a navigation sidebar that can

be toggled on small screens (see the screenshot here).

<l-- vale Vaadin.So = YES -->

[CN] = Contacts x +
<« C © localhost:8080 B x @ :
= Vaadin CRM Log out
Contacts Filter by name Add Contact
Dashboard
First name Last name Email Status Company
Eula Lane eula.lane@jigrormo.ye Imported lead Laboratory Corporation of America Holdings
Barry Rodriquez barry.rodriquez@zun.... Closed (lost) Avaya Inc.
Eugenia Selvi eugenia.selvi@capfad.vn Contacted Phillips Van Heusen Corp.
Alejandro Miles alejandro.miles@dec.bn Contacted Linens 'n Things Inc.
Cora Tesi cora.tesi@bivo.yt Customer Phillips Van Heusen Corp.
Marguerite Ishii marguerite.ishii@judbil... Not contacted Linens 'n Things Inc.
Mildred Jacobs mildred.jacobs@joraf.wf Imported lead Laboratory Corporation of America Holdings
Gene Goodman gene.goodman@kem.t! Closed (lost) Laboratory Corporation of America Holdings
Lettie Bennett lettie.bennett@odeter.bb Imported lead Phillips Van Heusen Corp.
Mabel Leach mabel.leach@lisohuje.vi Not contacted Linens 'n Things Inc.
Jordan Miccinesi jordan.miccinesi@duo... Contacted Laboratory Corporation of America Holdings
Marie Parkes marie.parkes@nowufp... Imported lead Avaya Inc.
Rose Gray rose.gray@kagu.hr Customer AutoZone, Inc.
Garrett Stokes garrett.stokes@fef.bg Contacted AutoZone, Inc.
Barbara Matthieu barbara.matthieu@der... Closed (lost) Avaya Inc.
Jean Rhodes jean.rhodes@wehovuc... Contacted Avaya Inc.
Jack Romoli jack.romoli@zamum.bw Customer Phillips Van Heusen Corp. .

View Routes

You can make any Vaadin component a navigation target by adding an @Route ("<path>")
annotation. Routes can be nested by defining the parent layout in the annotation:
@Route(value = "list", layout=MainLayout.class).

39

Parent Layout

The application should have a shared parent layout with two child views. The first, MainLayout:
App Layout should have a header and navigation: ListView: the default view, mapped to "";
and DashboardView: mapped to "dashboard". The second child should have a responsive
application layout and navigation links.

Begin by creating a new Java class named MainLayout in the views package with the
following content. This is the shared parent layout of both views in the application.

40

MainLayout.java

package com.example.application.views;

import com.example.application.views.list.ListView;

import com.vaadin.flow.component.applayout.AppLayout;

import com.vaadin.flow.component.applayout.DrawerToggle;

import com.vaadin.flow.component.html.H1;

import com.vaadin.flow.component.orderedlayout.FlexComponent;
import com.vaadin.flow.component.orderedlayout.HorizontallLayout;
import com.vaadin.flow.component.orderedlayout.VerticallLayout;
import com.vaadin.flow.router.HighlightConditions;

import com.vaadin.flow.router.RouterLink;

import com.vaadin.flow.theme.lumo.LumoUtility;

public class MainLayout extends AppLayout { @

public MainLayout() {
createHeader();
createDrawer();

private void createHeader () {
H1 logo = new H1("Vaadin CRM");
logo.addClassNames (
LumoUtility.FontSize.LARGE, @
LumoUtility.Margin.MEDIUM) ;

var header = new HorizontallLayout(new DrawerToggle(), logo); ®

header.setDefaultVerticalComponentAlignment (FlexComponent.Alignment.CENTER);

@
header.setWidthFull();
header.addClassNames (
LumoUtility.Padding.Vertical.NONE,
LumoUtility.Padding.Horizontal.MEDIUM);
addToNavbar (header); ®
}
private void createDrawer() {
addToDrawer (new VerticallLayout(®
new RouterLink("List", ListView.class) @
))s
}
}

@ ApplLayout is a Vaadin layout with a header and a responsive drawer.

@ Instead of styling the text with raw CSS, use Lumo Utility Classes shipped with the default
theme.

® DrawerToggle is a menu button that toggles the visibility of the sidebar.

41

{articles}/styling/lumo/utility-classes.pdf

@ Centers the components in the header along the vertical axis.

® Adds the header layout to the application layout’s nav bar, the section at the top of the
screen.

® Wraps the router link in a VerticallLayout and adds it to the AppLayout drawer.

@ Creates a RouterLink with the text "List" and ListView.class as the destination view.
RouterLink automatically maintains the highlight attribute currently active in the element, but
there is no default styling for it. Add the following CSS to
frontend/themes/flowcrmtutorial/styles.css to highlight the selected link.
styles.css

alhighlight] {

font-weight: bold;
text-decoration: underline;

Lastly, in ListView, update the @Route mapping to use the new MainLayout like so:

ListView.java

@Route(value="", layout = MainLayout.class) @
@PageTitle("Contacts | Vaadin CRM")
public class ListView extends VerticallLayout {

3

@ Listview still matches the empty path, but now uses MainLayout as its parent.

Now you're ready to run the application. When you do, you should now see a header and a
sidebar on the list view.

42

® ©® @ contacts| Vaadin CRM X +
< C @ localhost:8080
= Vaadin CRM

.
%

First Name

Eula
Barry
Eugenia
Alejandro
Cora
Marguerite
Mildred
Gene
Lettie
Mabel
Jordan
Marie
Rose
Garrett
Barbara
Jean

Jack

Dashboard View

Filter by name...

Last Name

Lane
Rodriquez
Selvi
Miles
Tesi

Ishii
Jacobs
Goodman
Bennett
Leach
Miccinesi
Parkes
Gray
Stokes
Matthieu
Rhodes

Romoli

Add contact

Email

eula.lane@jigrormo.ye
barry.rodriquez@zun.mm
eugenia.selvi@capfad.vn
alejandro.miles@dec.bn
cora.tesi@bivo.yt
marguerite.ishii@judbilo.gn
mildred.jacobs@joraf.wf
gene.goodman@kem.t!
lettie.bennett@odeter.bb
mabel.leach@lisohuje.vi
jordan.miccinesi@duod.gy
marie.parkes@nowufpus.ph
rose.gray@kagu.hr
garrett.stokes@fef.bg
barbara.matthieu@derwogi.jm
jean.rhodes@wehovuce.gu

jack.romoli@zamum.bw

Status

Imported lead
Closed (lost)
Contacted
Contacted
Customer
Not contacted
Imported lead
Closed (lost)
Imported lead
Not contacted
Contacted
Imported lead
Customer
Contacted
Closed (lost)
Contacted

Customer

Company

Laboratory Corporation of America Holdings
Avaya Inc.

Phillips Van Heusen Corp.

Linens 'n Things Inc.

Phillips Van Heusen Corp.

Linens 'n Things Inc.

Laboratory Corporation of America Holdings
Laboratory Corporation of America Holdings
Phillips Van Heusen Corp.

Linens 'n Things Inc.

Laboratory Corporation of America Holdings
Avaya Inc.

AutoZone, Inc.

AutoZone, Inc.

Avaya Inc.

Avaya Inc.

Phillips Van Heusen Corp.

Next, you'll create a new dashboard view. It'll show some basic statistics: the number of
contacts in the system, and a pie chart of the number of contacts per company.

43

50 contacts

Linens 'n Things Inc. \

/ Phillips Van Heusen Corp.

AutoZone, Inc. —

Avaya Inc.

Laboratory Corporation of America Holdings

Now create a new Java class named DashboardView in the views package with the following
content:

44

DashboardView.java

package com.example.application.views;

import com.example.application.data.service.CrmService;
import com.vaadin.flow.component.Component;

import com.vaadin.flow.component.charts.Chart;

import com.vaadin.flow.component.charts.model.ChartType;
import com.vaadin.flow.component.charts.model.DataSeries;
import com.vaadin.flow.component.charts.model.DataSeriesItem;
import com.vaadin.flow.component.html.Span;

import com.vaadin.flow.component.orderedlayout.VerticalLayout;
import com.vaadin.flow.router.PageTitle;

import com.vaadin.flow.router.Route;

import com.vaadin.flow.theme.lumo.LumoUtility;

(value = "dashboard", layout = MainLayout.class) @
("Dashboard | Vaadin CRM")
public class DashboardView extends VerticalLayout {
private final CrmService service;

public DashboardView(CrmService service) { @
this.service = service;
addClassName("dashboard-view");
setDefaultHorizontalComponentAlignment(Alignment.CENTER); ®
add(getContactStats(), getCompaniesChart());

private Component getContactStats() {
Span stats = new Span(service.countContacts() + " contacts"); @
stats.addClassNames (
LumoUtility.FontSize.XLARGE,
LumoUtility.Margin.Top.MEDIUM) ;
return stats;

private Chart getCompaniesChart() {
Chart chart = new Chart(ChartType.PIE);

DataSeries dataSeries = new DataSeries();
service.findAllCompanies().forEach(company ->
dataSeries.add(new DataSeriesItem(company.getName(), company
.getEmployeeCount()))); ®
chart.getConfiguration().setSeries(dataSeries);
return chart;

@ pashboardview is mapped to the "dashboard" path and uses MainLayout as a parent
layout.

@ Takes CrmService as a constructor parameter and saves it as a field.

® Centers the contents of the layout.

@ Calls the service to get the number of contacts.

® calls the service to get all companies, then creates a DataSeriesItem for each, containing
the company name and employee count. Don't worry about the compilation error, the
missing method is added in the next step.

Vaadin Charts is a Commercial Component Set

Vaadin Charts is a collection of data visualization components that's part of the Vaadin Pro

NOTE Subscription. Vaadin Charts comes with a free trial that you can activate in the browser. All Vaadin
Pro tools and components are free for students through the GitHub Student Developer Pack. For
an open source alternative for Vaadin Charts, check out the wide selection of community
extensions via Vaadin Directory.

Open Company . java and add the following field and getter to get the employee count without
having to fetch all of the entities.

Company.java

@Formula("(select count(c.id) from Contact c where c.company_id = id)") @
private int employeeCount;

public int getEmployeeCount(){
return employeeCount;

3

® The Formula is a Hibernate feature that allows you to specify SQL snippets to fetch special
fields. The query gets the count of employees without needing to fetch all of the employees.
Note that in a larger application you'll probably want to do this in some alternative way since
all Company entity loads now triggers an additional SQL query, even though the
employeeCount field is only needed in this DashboardView class.

Dashboard View in Main Layout Sidebar

To include a dashboard view in the main layout side base, add a navigation link to
DashboardView in the MainLayout drawer:

MainLayout.java

private void createDrawer() {
private void createDrawer() {
addToDrawer (new VerticalLayout(
new RouterLink("List", ListView.class),
new RouterLink("Dashboard", DashboardView.class)

)5

46

{articles}/components/charts.pdf
https://vaadin.com/pricing
https://vaadin.com/pricing
https://education.github.com/pack?utm_source=github+vaadin
https://vaadin.com/directory/

Build and run the application again. You should now be able to navigate to the dashboard view
and see stats on your CRM contacts. If you want, add or remove contacts in the list view to see

that the dashboard reflects your changes.

eo0e @ Dashboard | Vaadin CRM x +

< > C @ localhost:8080/dashboard

= Vaadin CRM

List 49 contacts
Dashboard

Linens 'n Things Inc.

AutoZone, Inc. |

Avaya Inc.

Laboratory Corporation of America Holdings

localhost:8080/dashboard

On the next part of this tutorial, you'll secure the application by adding a log-in screen.

52AFFD31-EA40-4AEF-B6OF-E3BB6E5A8379

~ Phillips Van Heusen Corp.

47

Add a Login Screen to an Application

On this part of this tutorial, you'll secure the Customer Relationship Management (CRM)
application by setting up Spring Security and adding a login screen to limit access to logged-in
users.

Login View

Start by creating a new view, LoginView, in the views package. You would do that like so:

48

LoginView.java
package com.example.application.views;

import com.vaadin.flow.component.html.H1;

import com.vaadin.flow.component.login.LoginForm;

import com.vaadin.flow.component.orderedlayout.VerticalLayout;
import com.vaadin.flow.router.BeforeEnterEvent;

import com.vaadin.flow.router.BeforeEnterObserver;

import com.vaadin.flow.router.PageTitle;

import com.vaadin.flow.router.Route;

import com.vaadin.flow.server.auth.AnonymousAllowed;

@Route("login") @

@PageTitle("Login | Vaadin CRM")

@AnonymousAllowed

public class LoginView extends VerticallLayout implements BeforeEnterObserver {

private final LoginForm login = new LoginForm(); @

public LoginView(){
addClassName("login-view");
setSizeFull(); ®
setAlignItems (Alignment.CENTER) ;
setJustifyContentMode (JustifyContentMode.CENTER) ;

login.setAction("login"); @

add(new H1("Vaadin CRM"), login);

@Override

public void beforeEnter (BeforeEnterEvent beforeEnterEvent) {
// inform the user about an authentication error
if(beforeEnterEvent.getLocation() ®
.getQueryParameters()
.getParameters()
.containsKey("error")) {

login.setError(true);

}

@ Map the view to the "login" path. LoginView should encompass the entire browser
window, so don't use MainLayout as the parent.

@ |nstantiate a LoginForm component to capture username and password.

® Make LoginView full size and center its content— both horizontally and vertically — by
calling setAlignItems (" Alignment.CENTER) and
setJustifyContentMode (" JustifyContentMode.CENTER) .

@ Set the LoginForm action to "login" to post the login form to Spring Security.

49

® Read query parameters and show an error if a login attempt fails.

Build the application and navigate to http://localhost:8080/login. You should see a centered
login form like the one in the screenshot here:

eoce @ Login | Vaadin CRM x + ©
<« G ® localhost:8080/login -z % @ :

Vaadin CRM

Login
Username

user

Password

Forgot password

Set Spring Security to Handle Logins

With the login screen in place, you now need to configure Spring Security to perform the
authentication and to prevent unauthorized users from accessing views.

Installing Spring Security Dependencies

Add the Spring Security dependency in pom.xml like so:

pom.xml

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>

50

http://localhost:8080/login

Confirm that the dependency is downloaded. If you're unsure, run . /mvnw install from the
command line to download the dependency.

Configure Spring Security

Create a new package, com.example.application.security for classes related to security.

Create Classes Automatically

TP Paste the class code into the security package to have IntelliJ automatically create the class

for you.

Enable and configure Spring Security with a new class, SecurityConfig.java like this:

51

SecurityConfig.java

package com.example.application.security;

import com.example.application.views.LoginView;

import com.vaadin.flow.spring.security.VaadinWebSecurity;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import
org.springframework.security.config.annotation.web.configuration.EnableWebSecurity;
import org.springframework.security.core.userdetails.User;

import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.security.core.userdetails.UserDetailsService;

import org.springframework.security.provisioning.InMemoryUserDetailsManager;

@EnableWebSecurity @
@Configuration
public class SecurityConfig extends VaadinWebSecurity { @

@Override
protected void configure(HttpSecurity http) throws Exception {
http.authorizeHttpRequests()
.requestMatchers("/images/*.png") .permitAll(); ®
super.configure(http);
setlLoginView(http, LoginView.class); @

@Bean
public UserDetailsService users() {
UserDetails user = User.builder()
.username("user')
// password = password with this hash, don't tell anybody :-)
.password (
"{bcrypt}$2a$10S$GRLANijSQMUv1/au9ofL.eDwmoohzzS7.rmNSJIZ.0Fx0/BTk76k1lW")
.roles("USER")
Lbuild();
UserDetails admin = User.builder()
.username("admin')
.password (
"{bcrypt}$2a$10$GRLANijSQMUv1/au9ofL.eDwmoohzzS7.rmNSJIZ.0Fx0/BTk76k1lW")
.roles("USER", "ADMIN")
Lbuild();
return new InMemoryUserDetailsManager (user, admin); ®

@ Enable Spring Security.
@ Extend the VaadinwWebSecu rity class to configure Spring Security for Vaadin.
® Allow public access to the image directory.

@ Allow access to LoginView.

52

® Configure an in-memory users for testing (see note below).

Never use hard-coded credentials in production.

Don't use hard-coded credentials in real applications. You can change the Spring Security
configuration to use an authentication provider for Lightweight Directory Access Protocol
(LDAP), Java Authentication and Authorization Service (JAAS), and other real-world sources.
Read more about Spring Security authentication providers.

WARNING

Next, in the same package, create a service for accessing information on the logged-in user
and for logging out the user.
SecurityService.java

package com.example.application.security;

import com.vaadin.flow.spring.security.AuthenticationContext;
import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.stereotype.Component;

@Component
public class SecurityService {

private final AuthenticationContext authenticationContext;

public SecurityService(AuthenticationContext authenticationContext) {
this.authenticationContext = authenticationContext;

public UserDetails getAuthenticatedUser() {
return authenticationContext.getAuthenticatedUser (UserDetails.class).get();

public void logout() {
authenticationContext.logout();

Finally, add @PermitAll annotations to both views to allow all logged-in users to access them.

ListView.java

@PermitAll

@Route(value="", layout = MainLayout.class)

@PageTitle("Contacts | Vaadin CRM")

public class ListView extends VerticallLayout {
// omitted

53

https://dzone.com/articles/spring-security-authentication

DashboardView.java

@PermitAll

@Route(value = "dashboard", layout = MainLayout.class)

@PageTitle("Dashboard | Vaadin CRM")

public class DashboardView extends VerticallLayout {
// omitted

Add a Logout Button

You can now log in to the application. The last item to add is a logout button in the application
header.

In MainLayout, add a link to the header like this:

54

MainLayout.java

package com.example.application.views;

import com.example.application.security.SecurityService;
import com.example.application.views.list.ListView;

import com.vaadin.flow.component.applayout.AppLayout;

import com.vaadin.flow.component.applayout.DrawerToggle;
import com.vaadin.flow.component.button.Button;

import com.vaadin.flow.component.html.H1;

import com.vaadin.flow.component.orderedlayout.FlexComponent;
import com.vaadin.flow.component.orderedlayout.HorizontalLayout;
import com.vaadin.flow.component.orderedlayout.VerticalLayout;
import com.vaadin.flow.router.RouterLink;

import com.vaadin.flow.theme.lumo.LumoUtility;

public class MainLayout extends AppLayout {
private final SecurityService securityService;

public MainLayout(SecurityService securityService) { @
this.securityService = securityService;
createHeader () ;
createDrawer () ;

private void createHeader() {
H1 logo = new H1("Vaadin CRM");
logo.addClassNames (
LumoUtility.FontSize.LARGE,
LumoUtility.Margin.MEDIUM);

String u = securityService.getAuthenticatedUser().getUsername();
Button logout = new Button('"Log out " + u, e -> securityService.logout());

@
var header = new HorizontallLayout(new DrawerToggle(), logo, logout); ®
header.setDefaultVerticalComponentAlignment (FlexComponent.Alignment.CENTER);
header.expand(logo); @
header.setWidthFull();
header.addClassNames (
LumoUtility.Padding.Vertical.NONE,
LumoUtility.Padding.Horizontal.MEDIUM);
addToNavbar (header) ;
}
private void createDrawer() {
addToDrawer (new VerticalLayout(
new RouterLink("List", ListView.class),
new RouterLink("Dashboard", DashboardView.class)
))s
}
}

55

@ Autowire the SecurityService and save it in a field.

@ Create a logout button that calls the logout () method in the service.

® Add the button to the header layout.

@ call header .expand(logo) to make the logo take up all of the extra space in the layout.

This can push the logout button to the far right.

Stop and restart the server to get the new Maven dependencies. You should now be able to log
in and out of the application. Verify that you can’t access http://localhost:8080/dashboard
without being logged in. You can log in with the username, user, and the password, password.

e0e = Contacts | Vaadin CRM x 4+ °
<« C @ localhost:8080 Z % @ :
= Vaadin CRM Log out

List Filter by name... Add contact
Dashboard
First Name Last Name Email Status Company
Eula Lane eula.lane@jigrormo.ye Imported lead Laboratory Corporation of America Holdings
Barry Rodriquez barry.rodriquez@zun.mm Closed (lost) Avaya Inc.
Eugenia Selvi eugenia.selvi@capfad.vn Contacted Phillips Van Heusen Corp.
Alejandro Miles alejandro.miles@dec.bn Contacted Linens 'n Things Inc.
Cora Tesi cora.tesi@bivo.yt Customer Phillips Van Heusen Corp.
Marguerite Ishii marguerite.ishii@judbilo.gn Not contacted Linens 'n Things Inc.
Mildred Jacobs mildred.jacobs@joraf.wf Imported lead Laboratory Corporation of America Holdings
Gene Goodman gene.goodman@kem.tl Closed (lost) Laboratory Corporation of America Holdings
Lettie Bennett lettie.bennett@odeter.bb Imported lead Phillips Van Heusen Corp.
Mabel Leach mabel.leach@lisohuje.vi Not contacted Linens 'n Things Inc.
Jordan Miccinesi jordan.miccinesi@duod.gy Contacted Laboratory Corporation of America Holdings
Marie Parkes marie.parkes@nowufpus.ph Imported lead Avaya Inc.
Rose Gray rose.gray@kagu.hr Customer AutoZone, Inc.
Garrett Stokes garrett.stokes@fef.bg Contacted AutoZone, Inc.
Barbara Matthieu barbara.matthieu@derwogi.jm Closed (lost) Avaya Inc.
Jean Rhodes jean.rhodes@wehovuce.gu Contacted Avaya Inc.
Jack Romoli jack.romoli@zamum.bw Customer Phillips Van Heusen Corp. .

You have now built a full-stack CRM application with navigation and authentication. On the next
part of this tutorial, you'll learn how to turn it into a PWA to make it installable on mobile and
desktop platforms.

234932EC-C4B0O-4FA5-A22E-DE6GE5A070007

56

http://localhost:8080/dashboard

Make a Vaadin Flow Application an Installable
PWA

On this part of this tutorial, you'll turn the completed Customer Relationship Management (CRM)

application into a Progressive Web Application (PWA), so that users can install it.

Understanding PWAs

The term PWA is used to describe modern web applications that offer a user experience simila
to a native application. PWA technologies make applications faster, more reliable, and more

engaging.

PWAs can be installed on most mobile devices and on desktops when using supported
browsers. They can even be listed in the Microsoft Store and Google Play Store. You can learn

r

more about the underlying technologies and features in the PWA configuration documentation.

Two main components enable PWA technologies:
» ServiceWorker: a JavaScript worker file that controls network traffic and enables custom
cache control.

* Web application manifest: a JSON file that identifies the web application as an installable
application.

PWA Resources

Vaadin provides the @PWA annotation, which automatically generates the required PWA
resources. Add the @PWA annotation on Application.java as follows:

57

{articles}/configuration/pwa.pdf

Application.java

@SpringBootApplication
@Theme(value = "flowcrmtutorial")
@PWA(@
name = "Vaadin CRM", @
shortName = "CRM" ®
)

public class Application extends SpringBootServletInitializer implements
AppShellConfigurator {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}
}
@ The @PWA annotation tells Vaadin to create a ServiceWorker and a manifest file.

@ hame is the full name of the application for the manifest file.

® shortName should be short enough to fit under an icon when installed, and shouldn’t exceed
12 characters.

Application Icon
You can override the default icon by replacing <code>src/main/resources/META-

INF/resources/icons/icon.png</code> with another 512px × 512px PNG icon.

You can use your own icon, or save a sample image, by right-clicking the link and selecting
Save Link As. Be sure to have the file in PNG format.

Customize Offline Page

Vaadin creates a generic offline fallback page that displays when the application is launched
offline. You can make your application appear more polished by replacing this default page with
a custom page that follows your own design guidelines.

Use the code below to create offline.html in the src/main/resources/META-
INF/resources folder:

58

https://github.com/vaadin/docs/raw/latest/articles/tutorial/images/pwa/icon.png

offline.html

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta http-equiv="X-UA-Compatible" content="ie=edge"/>
<title>0ffline | Vaadin CRM</title>
<style>
body {
display: flex;
flex-direction: column;
align-items: center;
font-family: sans-serif;
color: #5553

.content {
width: 80%;

.offline-image {
width: 100%;
margin: 4em Opx;
}
</style>
</head>
<body>

<div class="content">
<img src="./images/offline.png" alt="VaadinCRM is offline" class="offline-image
">
<h1>0h deer, you're offline</hl>
<p>Your -qinternet connection is offline. Get back online to continue using Vaadin
CRM.</p>
</div>
<script>
window.addEventListener('online', () => window.location.reload()); @
</script>
</body>
</html>

® The JavaScript snippet reloads the page if the browser detects that it's back online.

Add the following image — or use one of your own—to the META-INF/resources/images
folder and name it of fline.png.

59

You can make the files available offline by adding them to the @PWA annotation in Application

as follows:

Application.java

@PWA (
name = "VaadinCRM",
shortName = "CRM",

offlinePath="offline.html",
offlineResources = { "./images/offline.png"} @®

)
® offlineResources is a list of files that Vaadin makes available offline through the

ServiceWorker.

Now, restart the application. You can install it on supported browsers.

Test Offline Page
Shut down the server in IntelliJ and refresh the browser—or launch the installed application.

You should now see the custom offline page.

60

L N Offline | Vaadin CRM

Oh deer, you're offline

Your internet connection is offline. Get back online to continue using Vaadin CRM.

On the next part of this tutorial, you'll add both unit tests and in-browser tests to the
application.

2861D7D6-5025-4A8B-A866-38CO1AF5FF91

61

Unit & Integration Tests

It's a common and best practice to test as little code as possible in a single test. This way, when
things go wrong, only relevant tests fail. It makes it easier to troubleshoot.

For Ul testing, there are three main approaches:

* Unit tests for simple Ul logic.
* Integration tests for more advanced Ul logic.

* End-to-end tests to check what the user sees.

You can run unit and integration tests as a standalone, that is, without any external
dependencies, such as a running server or database.

End-to-end tests require the application to be deployed. They’re run in a browser window to
simulate an actual user.

On this part of this tutorial, you'll write and run unit and integration tests. End-to-end tests are
covered on the next part.

Unit Tests for Simple Ul Logic

The most minimal way of testing is to create a plain Java unit test. This only works with Ul
classes with no dependencies, no auto-wiring, etc. For the ContactForm, you can create a unit
test to verify that the form fields are correctly populated, based on the given bean.

Put tests in the correct folder

NOTE Alltest classes should go in the test folder, src/test/java. Pay special attention to the
package names. Use package access for class fields. If the test isn’t in the same package as the
class you're testing, you'll get errors.

Now, create a new folder, <code>src/test/java</code>. In IntelliJ, right-click on the folder and
select Mark Directory as → Test Sources Root. In the new folder, create
a new package, <code>com.example.application.views.list</code>, and add a new <code
class="filename">ContactFormTest.java</code> file with the following code:

62

ContactFormTest.java

package com.example.application.views.list;

import
import
import

import
import
import
import
import
import

public

com.example.application.data.entity.Company;
com.example.application.data.entity.Contact;
com.example.application.data.entity.Status;

java.util.ArrayList;

java.util.List;
java.util.concurrent.atomic.AtomicReference;

static org.junit.jupiter.api.Assertions.assertEquals;
org.junit.jupiter.api.BeforeEach;
org.junit.jupiter.api.Test;

class ContactFormTest {

private List<Company> companies;
private List<Status> statuses;
private Contact marcUsher;
private Company companyl;
private Company company2;
private Status statusl;

private Status status2;

@BeforeEach @
public void setupData() {

@ The @BeforeEach annotation adds dummy data that’s used for testing. This method is

companies = new ArrayList<>();
companyl = new Company();
companyl.setName("Vaadin Ltd");
company2 = new Company();
company2.setName("IT Mill");
companies.add(companyl);
companies.add(company2);

statuses = new ArrayList<>();
statusl = new Status();
statusl.setName("Status 1");
status2 = new Status();
status2.setName("Status 2");
statuses.add(statusl);
statuses.add(status2);

marcUsher = new Contact();
marcUsher.setFirstName("Marc'");
marcUsher.setLastName ("Usher'");
marcUsher.setEmail("marc@usher.com");
marcUsher.setStatus(statusl);
marcUsher.setCompany (company?2) ;

executed before each @Test method.

63

Now, add a test method that uses ContactForm:

ContactFormTest.java

@Test

public void formFieldsPopulated() {
ContactForm form = new ContactForm(companies, statuses);
form.setContact(marcUsher); @
assertEquals("Marc", form.firstName.getValue());
assertEquals("Usher", form.lastName.getValue());
assertEquals("marc@usher.com", form.email.getValue());
assertEquals(company2, form.company.getValue());
assertEquals(statusl, form.status.getValue()); @

@ validates that the fields are populated correctly, by first initializing the contact form with
some companies, and then setting a contact bean for the form.

@ Uses standard JUnit assertEquals () methods to compare the values from the fields
available through the ContactForm instance:

Similarly, you can test the "save" functionality of ContactForm like so:

ContactFormTest.java

@Test

public void saveEventHasCorrectValues() {
ContactForm form = new ContactForm(companies, statuses);
Contact contact = new Contact();
form.setContact(contact); @
form.firstName.setValue("John"); @
form.lastName.setValue('"Doe");
form.company.setValue (companyl) ;
form.email.setValue("john@doe.com") ;
form.status.setValue(status2);

AtomicReference<Contact> savedContactRef = new AtomicReference<>(null); ®
form.addSavelListener(e -> {
savedContactRef.set(e.getContact());
b
form.save.click(); @
Contact savedContact = savedContactRef.get();

assertEquals("John", savedContact.getFirstName()); ®
assertEquals("Doe", savedContact.getLastName());
assertEquals("john@doe.com", savedContact.getEmail());
assertEquals(companyl, savedContact.getCompany());
assertEquals(status2, savedContact.getStatus());

@ |nitialize the form with an empty Contact.

64

@ Populate values into the form.

® Capture the saved contact into an AtomicReference.

@ Click the save button and read the saved contact.

® Once the event data is available, verify that the bean contains the expected values.

To run the unit test, right-click ContactFormTest and select Run 'ContactFormTest', as shown
in the screenshot here:

test New

IEVE) K Cut
com [E Copy
example Copy Path...
application [] paste

Find Usages
Analyze

Refactor

Add to Favorites

o -gitignore Browse Type Hierarchy

-prettierrc.js Reformat Code

Optimize Imports
LICENSE.md Delete...

mvnw
Build Module 'flowcrmtutorial’

Run 'ContactFormTest'
Debug 'ContactFormTest'

mvnw.cmd
i) package.json
iy package-lock.json

When the test finishes, you should see the results at the bottom of the IDE window in the test-
runner panel. As shown here, both tests passed.

65

Run: Application ContactFormTest
v @ 1 F = < @ » + Tests passed: 2

v ContactFormTest 663 ms
formFieldsPopulated

saveEventHasCorrectValues 16:02:21.551
16:02:21.554

16:02:21.559

16:02:21.560

- 16:02:21.561
[16:02:21.561

».Run @ Problems % Debug [Git Terminal @) Profiler i= TODO

w
QD
=
=
(=]
>
©
(1
*

2% JRebel

(|

Tests passed: 2 (moments ago)

Integration Tests for More Advanced Ul Logic

To test a class that uses @Autowire, a database, or any other feature provided by Spring Boot,
you can no longer use plain JUnit tests. Instead, use the Spring Boot test runner. This adds a
little overhead, but it makes more features available to your test.

To set up a unit test for ListView, create a new file, ListViewTest, in the
com.example.application.views. list package like so:

66

ListViewTest.java

package com.example.application.views.list;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

@SpringBootTest @D
public class ListViewTest {

@Autowired
private ListView listView;

@Test
public void formShownWhenContactSelected() {

}

@ The @SpringBootTest annotation makes sure that the Spring Boot application is initialized
before the tests are run and allows you to use the @Autowired annotation in the test.

In the ListView class add the Spring @Component annotation to make it possible to @QAutowire
it. Also add @Scope ("prototype") to ensure that every test run gets a fresh instance.

Annotation isn’t needed for normal application runs.

NOTE vou don't need to add the annotation for normal application usage since all @Route classes are
automatically instantiated by Vaadin in a Spring-compatible way.

ListView.java

@Component

@Scope("prototype")

@Route(value = "", layout = MainLayout.class)

@PageTitle("Contacts | Vaadin CRM")

@PermitAll

public class ListView extends VerticalLayout {
Grid<Contact> grid = new Grid<>(Contact.class);
TextField filterText = new TextField();
ContactForm form;
CrmService service;

// rest omitted

Right-click the package that contains both tests, and select Run tests in

67

‘com.example.application.views.list'. You should see that both test classes run and result in
three successful tests.

test
java
com Refactor

Analyze

examplfz Add to Favorites
applica
Reformat Code
Optimize Imports

Delete... ®

Build Module 'flowcrmtutorial’

Rebuild ... lication.views.list' OF9
Run 'Tests in 'com.example.application.views.list" ~EGR
Debug 'Tests in 'com.example.application.views.list"' ~&D
.prettierrc.js More Run/Debug >

o -gitignore

Run: Application com.example.application.views.list in flowcr

v @ 11 I = ® » + Tests passed: 3
v list 186 ms
ListViewTest

formShownWhenContact 16:10:08.839
ContactFormTest . .

formFieldsPopulated 16:10:08.842

saveEventHasCorrectValu 16:10:08.851

16:10:08.877

= 16:10:08.886

Tests passed: 3 16:10:08.890

p.Run @ Problems # Debug [Git o Terminal G Profiler = TODO

Tests passed: 3 (a minute ago)

o
Q
=
o
(=]
>
1]
L
*

% JRebel

(|

Integration tests take longer.

You probably noticed that running the tests the second time took much longer. This is the price of
being able to use @Autow1 re and other Spring features. They can take many seconds to start.

NOTE Toimprove startup time, you can explicitly list the needed dependencies in the
@SpringBootTest annotation using classes={..}. You can also mock up parts of the
application. And you can use other advanced techniques, but they’re beyond the scope of this
tutorial.

See Pivotal’'s Spring Boot Testing Best Practices for tips on speeding up your tests.

You can now add the actual test implementation, which selects the first row in the grid and
validates that this shows the form with the selected Contact:

ListViewTest.java

@Test

public void formShownWhenContactSelected() {
Grid<Contact> grid = listView.grid;
Contact firstContact = getFirstItem(grid);

ContactForm form = listView.form;

assertFalse(form.isVisible());
grid.asSingleSelect().setValue(firstContact);
assertTrue(form.isVisible());
assertEquals(firstContact.getFirstName(), form.firstName.getValue());

private Contact getFirstItem(Grid<Contact> grid) {

return((ListDataProvider<Contact>) grid.getDataProvider()).getItems().iterator
() .next();
}

The test verifies that the form logic works by asserting that the form is initially hidden. It also
does so by selecting the first item in the grid and verifying that the form is visible and the form
is bound to the correct Contact by ensuring that the right name is visible in the field.

Now, rerun the tests. They should all pass.

At this point, you should know how to test the application logic both in isolation with unit tests
and by injecting dependencies to test the integration between several components. The next
part of this tutorial covers how to test the entire application in the browser.

If your components depend on UI.getCurrent(), UIL.navigate(), and similar, you may need
to fake or mock the Vaadin environment for those tests to pass. For further information on how
to achieve that, look at Ul Unit Testing in Vaadin TestBench or the open source Karibu-Testing

69

https://pivotal.io/application-modernization-recipes/testing/spring-boot-testing-best-practices
../testing/ui-unit.pdf
https://github.com/mvysny/karibu-testing/

project.

76D89DA1-B104-4745-8D51-9589846051C8

70

Test Vaadin Applications in Browser with End-To-
End Tests

End-to-end (e2e) tests are used to test an entire application. They’re much more coarse-
grained than unit or integration tests. This makes them well suited to check that the application
works as a whole, and catch any regressions that may be missed by more specific tests.

End-to-end tests are executed in a browser window. Vaadin TestBench controls the browser
window using Selenium WebDriver.

Vaadin TestBench is a commercial product.

The end-to-end tests use Vaadin TestBench, which is a commercial tool that's part of the Vaadin
Pro Subscription. You can get a free trial at https://vaadin.com/trial. All Vaadin Pro tools and
components are free for students through the GitHub Student Developer Pack. For an open source
alternative for TestBench, you can get similar results with plain Selenium WebDriver or Playwright.

NOTE

The Base Test Class

Vaadin TestBench contains handy base classes that you can use as a basis for your e2e tests.
The JUnit5 version is called BrowserTestBase. It can be used alone, if you orchestrate starting
and stopping your server. For example, it can be used with Maven executions in pre-
integration-test and post-integration-test, and to execute the actual test in
integration test phase.

In Spring Boot applications, it's easier to use the same @SpringBootTest annotation that you
already used in the previous phase to ensure a running server during the browser test

execution.

First, create a new class, LoginE2ETest in the com.example.application.it package. Be
sure to place itin src/test/java and not src/main/java.

71

https://vaadin.com/testbench
https://vaadin.com/trial
https://education.github.com/pack
https://www.selenium.dev
https://playwright.dev

LoginE2ETest.java
package com.example.application.it;

import ch.qos.logback.classic.Level;

import ch.qos.logback.classic.Logger;

import com.vaadin.testbench.IPAddress;

import com.vaadin.testbench.ScreenshotOnFailureRule;
import com.vaadin.testbench.parallel.ParallelTest;
import jo.github.bonigarcia.wdm.WebDriverManager;
import org.junit.Before;

import org.junit.BeforeClass;

import org.junit.Rule;

import org.slf4j.LoggerFactory;

public abstract class LoginE2ETest extends ParallelTest {
private static final String SERVER_HOST = IPAddress.findSiteLocalAddress();
private static final int SERVER_PORT = 8080;
private final String route;

static {
// Prevent debug logging from Apache HTTP client
Logger root = (Logger) LoggerFactory.getLogger (Logger.ROOT_LOGGER_NAME) ;
root.setLevel(Level.INFO);

@BeforeClass
public static void setupClass() {
WebDriverManager.chromedriver().setup(); @

@Rule @
public ScreenshotOnFailureRule rule = new ScreenshotOnFailureRule(this, true);

@Before

public void setup() throws Exception {
super.setup();
getDriver().get(getURL(route)); ®

protected LoginE2ETest(String route) {
this.route = route;

private static String getURL(String route) {
return String.format("http://%s:%d/%s", SERVER_HOST, SERVER_PORT, route);

}

® start by invoking the Chrome WebDriverManager before any test method is invoked.
TestBench doesn’t invoke the WebDriver manager.

@ screenshotoOnFailureRule tells TestBench to grab a screenshot before exiting, if a test
fails. This can help you understand what went wrong when tests don't pass.

72

©) Open the browser to the correct URL before each test. For this, you need the host name
where the application runs (i.e., "localhost" in development), the port the server uses, which
is set to 8080 in application.properties, and information about the route from which to start.

Test the Login View

Now that your setup is complete, you can start developing your first test: ensuring that a user
can log in. For this test, you need to open the base URL.

Create a new class, LoginIT, in the same package as LoginE2ETest. The test validates that
logging in with the correct user and password succeeds.

LoginE2ETest.java

package com.example.application.qit;

import com.vaadin.flow.component.login.testbench.LoginFormElement;
import com.vaadin.testbench.BrowserTest;

import com.vaadin.testbench.BrowserTestBase;

import com.vaadin.testbench.annotations.RunLocally;

import com.vaadin.testbench.parallel.Browser;

import org.junit.jupiter.api.BeforeEach;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.core.env.Environment;

import static org.junit.jupiter.api.Assertions.assertFalse;

//@RunLocally(Browser.FIREFOX) @
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class LoginE2ETest extends BrowserTestBase { @

@Autowired
Environment env;

static {
// Prevent Vaadin Development mode to launch browser window
System.setProperty('"vaadin.launch-browser", "false");

@BeforeEach
void openBrowser() {
getDriver().get("http://localhost:" +
env.getProperty("local.server.port") + "/"); ®

@BrowserTest @

public void loginAsValidUserSucceeds() {
// Find the LoginForm used on the page, using a
// typed selector API provided by TestBench

73

LoginFormElement form = $(LoginFormElement.class).first();
// Enter the credentials and log 1in
form.getUsernameField().setValue("user");
form.getPasswordField().setValue("password");
form.getSubmitButton().click();

// Behind the scenes TestBench uses lower level WebDriver API
// Here we can configure it on the fly
getDriver().manage().timeouts().implicitlyWait(Duration.of(1, ChronoUnit

.SECONDS)) ;
// Here finding an element on the actual main layout (after login),
// using pure WebDriver API, BTW. There is also AppLayoutElement for TB
getDriver().findElement(By.tagName("vaadin-app-layout"));

// Ensure the login form is no longer visible
assertFalse($(LoginFormElement.class).exists());

}

® This optional annotation specifies the test to be run on the local machine and using Firefox.
The default is Chrome.

@ The super class BrowserTestBase provides handy helper methods and configures
TestBench.

® The openBrowser method is annotated to be executed before each actual tests. The URL
points to local test server with the random port SpringBootTest has selected. The browser
should be automatically redirected to the login screen.

@ BrowserTest annotation is a TestBench extension of the better known Test annotation, that
is handy if you decide to extend your end-to-end tests to cover multiple browsers at some
point.

Right-click LoginE2ETest.java and select Run 'LoginE2ETest'".

Create a View Object

You can now add a second test, one to validate that you can’t log in with an invalid password.
For this test, you need to write the same code to access the components in the view as you did
for the first test. To make your tests more maintainable, you can create for each view a view

object— otherwise known as a call page object or element class. A view object provides a high-
level API to interact with the view and hides the implementation details.

For the login view, create the LoginViewElement class in a new package,
com.example.application.it.elements:

74

LoginViewElement.java

package com.example.application.it.elements;

import com.
import com.
import com.
import org.

vaadin. flow.component.login.testbench.LoginFormElement;
vaadin.flow.component.orderedlayout.testbench.VerticalLayoutElement;
vaadin.testbench.annotations.Attribute;

openga.selenium.By;

import java.time.Duration;
import java.time.temporal.ChronoUnit;
import java.util.concurrent.TimeUnit;

@Attribute(name = "class", contains = "login-view")
public class LoginViewElement extends VerticalLayoutElement {

public

boolean login(String username, String password) {

LoginFormElement form = $(LoginFormElement.class).first();
form.getUsernameField().setValue(username);
form.getPasswordField().setValue(password);
form.getSubmitButton().click();

try {

ChronoUnit

getDriver().manage().timeouts().implicitlyWait(Duration.of(1,

.SECONDS)) ;

getDriver().findElement(By.tagName("vaadin-app-layout"));
return true;

} catch (Exception e) {

return false;

}
}

}
Class hierarchies must match.
To make the correct functionality available from superclasses, the hierarchy of the view object

CAUTION ghoyi1d match the hierarchy of the view (i.e., public class LoginView extends
VerticallLayout vs public class LoginViewElement extends
VerticallLayoutElement).

Adding the @Attribute(name = "class", contains = "login-view'") annotation allows

you to find the LoginViewElement using the TestBench query API. The following is an example

of this:

Finding a LoginViewElement using the TestBench query API

LoginViewElement loginView = $(LoginViewElement.class).onPage().first();

The annotation searches for the login-view class name, which is set for the login view in the
constructor. The onPage () call ensures that the whole page is searched. By default, a $ query

75

starts from the active element.

Now that you have the LoginViewElement class, you can simplify your
loginAsValidUserSucceeds () test to be this:
LoginE2ETest.java

@BrowserTest

public void loginAsValidUserSucceeds() {
LoginViewElement loginView = $(LoginViewElement.class).onPage().first();
assertTrue(loginView.login("user", "password"));

Add a test to use an invalid password as follows:

LoginE2ETest.java

@BrowserTest

public void loginAsInvalidUserFails() {
LoginViewElement loginView = $(LoginViewElement.class).onPage().first();
assertFalse(loginView.login("user", "invalid"));

You can continue testing the other views by creating similar view objects and IT classes.
If you're building a large application, it's probably better to make slower end-to-end tests
executed only when requested separately. You can do this by using Maven Failsafe plugin or

using the tagging feature in JUnit 5.

The next part covers how to make a production build of the application and deploy it to a cloud
platform.

ODDFOF9E-DCFO-4AEC-9DD4-C241699CCT7F7

76

https://maven.apache.org/surefire/maven-failsafe-plugin/
https://junit.org/junit5/docs/current/user-guide/#writing-tests-tagging-and-filtering

Deploy a Vaadin Flow Application on Azure

<!I-- vale Vaadin.Terms = NO -->

In this final part of this tutorial, you'll learn how to deploy a Spring Boot application on Azure.
You'll use Azure Container Apps, which is a simple way to deploy applications on Azure. For a
larger scale deployment and the best possible end-user experience, consider using Azure
Kubernetes Service together with Vaadin Kubernetes Kit.

This part covers:

* Vaadin production builds;
* Packaging Vaadin applications as a Docker image;
* Deploying a Docker packaged web application using Azure Container Apps; and

* Tips for production deployment.

Vaadin can be deployed on any cloud provider.

TIP From a cloud provider’s point of view, a Vaadin application is a standard Java web application. You
can deploy your application onto almost any cloud platform, in many different ways. Read the
Cloud Deployment tutorials for more options.

Prepare for Production

It's important to build a separate production-optimized version of the application before
deploying it. In development mode, Vaadin has a live-reload widget, debug logging, and uses a
quick but unoptimized front-end build that includes source maps for easy debugging that’s
maintained using npm and Vite. Unoptimized front-end bundles can contain several megabytes
of JavaScript and dependencies that aren’t needed during production deployment.

The pom.xml file includes a production profile configuration that prepares an optimized build
which is ready for production. Enter the following at the command-line in the project directory

to build a production-ready JAR file:

mvn install -Pproduction

Deployment Using Azure Container Apps

To use Azure Container Apps, you'll need to do the following:

77

https://azure.microsoft.com
https://vaadin.com/clustering
{articles}/production/cloud-providers.pdf

1. Install and run Docker (e.g., using Docker Desktop).
2. Install Azure CLI or make sure you have it up-to-date with az upgrade.
3. Log into Azure using a browser and make sure you have an active Azure subscription. Use

Start Free Trial, if you don’t have an existing one.

From the commmand-line, login using Azure CLI like so:

az login

If you're not located in North America, you'll have a better experience with Azure by choosing a
nearby region. For example, a Europe based developer can do this with az config set
defaults.location=westeurope or pick the location per application. Pick a location that
already supports Container Apps.

TIP

Docker image is a basic building block used by many modern hosting solutions to run
applications. The example project contains a simple ready-made Docker f1ile that essentially
describes how the JAR file built in the previous step should be run.

Azure Container Apps contains a handy up command, that does much of convention-based
setups for Docker-based deployments. With a single command, Azure tooling builds a Docker
image, pushes it to a custom project specific Docker registry and creates a single node
deployment based on it.

az containerapp up -n my-crm-app --source .

The my-crm-app should be changed to the name for your application in Azure. The last . is
relevant in the command as it asks Azure to pick the sources from the current directory. The
first time you use Azure Container Apps, the CLI asks you to install some new components.

The first deployment can take several minutes, depending on the speed of your computer and
network. Once the deployment is finished, you should see the URL to your newly deployed
Vaadin application at the end of the command output.

Avoid data loss

This application uses in-memory H2 database by default, which is useful for development.
The database is re-created on each deployment and is embedded for each node. For actual

WARNING usage, you should switch to your preferred database — at least in the production profile —to
use ddl-auto=none and start to use a database migration tool like Liquibase or Flyway, so
you can evolve the database schema without losing data. Check Spring and Azure
documentation for more details.

Refer to the Azure Container Apps documentation for more details how to configure your

78

https://www.docker.com/products/docker-desktop/
https://learn.microsoft.com/cli/azure/install-azure-cli
https://azure.microsoft.com
https://azure.microsoft.com/explore/global-infrastructure/products-by-region/?products=container-apps®ions=all
https://www.liquibase.org/
https://flywaydb.org/
https://learn.microsoft.com/azure/container-apps/

deployment. The horizontal scaling doesn’t work yet with Vaadin applications — session affinity
for Container Apps ingress is currently in development. However, you can configure the node to
be a larger one to scale up your application. For large scale deployments, you should see
Kubernetes based clustering solutions.

Tutorial Conclusion & Next Steps
If you had any problems or were confused by any part of this tutorial, you can contact @vaadin

on Twitter or join Vaadin’s Discord chat.

If all went correctly, though, you built a full-stack web application in pure Java and deployed it
to Azure. You can use it to experiment further or as a foundation for your next project.

Helpful Resources
* Source code GitHub repository
* Vaadin Discord chat
* Stack Overflow
* Flow documentation
* Vaadin components

* Compare Vaadin with React, Angular, and Vue

01A3D231-9D1B-4D4D-A6BB-CB4D37E01CBE

79

https://vaadin.com/clustering
https://twitter.com/vaadin
https://discord.gg/vaadin
https://github.com/vaadin-learning-center/crm-tutorial
https://discord.gg/vaadin
https://stackoverflow.com/questions/ask?tags=vaadin
{articles}/overview.pdf
{articles}/components.pdf
https://vaadin.com/comparison

	Modern Web App Development in Java
	Table of Contents
	Vaadin Flow Project Setup
	Download Vaadin Application Starter
	Import a Maven Project into IntelliJ
	Run a Spring Boot Project in IntelliJ
	Enable Auto Import in IntelliJ

	Create a Vaadin Flow View with Components
	Basic Elements
	The Contact List View

	Create a Form Component for Editing Contacts
	Components Using Composition
	Form Component
	Add Form to Main View

	Connect a View to the Backend
	Introduction to Spring Boot
	Backend Overview
	Create a Service for Database Access
	Implement Filtering in the Repository
	Using Back-End Service

	Vaadin Forms: Data Binding & Validation
	Use Vaadin Binder to Create a Form & Validate Input
	Create the Binder
	Set the Contact
	Set Up Component Events
	Save, Delete, & Close the Form

	Passing Data & Events among Vaadin Components
	Show Selected Contact in Form
	Form Events
	Making the Layout Responsive

	Navigating among Views in Vaadin
	View Routes
	Parent Layout
	Dashboard View
	Dashboard View in Main Layout Sidebar

	Add a Login Screen to an Application
	Login View
	Set Spring Security to Handle Logins
	Add a Logout Button

	Make a Vaadin Flow Application an Installable PWA
	Understanding PWAs
	PWA Resources
	Customize Offline Page
	Test Offline Page

	Unit & Integration Tests
	Unit Tests for Simple UI Logic
	Integration Tests for More Advanced UI Logic

	Test Vaadin Applications in Browser with End-To-End Tests
	The Base Test Class
	Test the Login View
	Create a View Object

	Deploy a Vaadin Flow Application on Azure
	Prepare for Production
	Deployment Using Azure Container Apps
	Tutorial Conclusion & Next Steps

